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Consider the revenue-maximizing problem in which a single seller
wants to sell k different items to a single buyer, who has indepen-
dently distributed values for the items with additive valuation. The
k= 1 case was completely resolved by Myerson’s classical work in
1981, whereas for larger k the problem has been the subject of much
research efforts ever since. Recently, Hart and Nisan analyzed two
simple mechanisms: selling the items separately, or selling them as
a single bundle. They showed that selling separately guarantees at
least a c=log2   k fraction of the optimal revenue; and for identically
distributed items, bundling yields at least a c=log  k fraction of the
optimal revenue. In this paper, we prove that selling separately guar-
antees at least c=log  k fraction of the optimal revenue, whereas for
identically distributed items, bundling yields at least a constant frac-
tion of the optimal revenue. These bounds are tight (up to a constant
factor), settling the open questions raised by Hart and Nisan. The
results are valid for arbitrary probability distributionswithout restric-
tions. Our results also have implications on other interesting issues,
such as monotonicity and randomization of selling mechanisms.

auction | mechanism design

In the multiple-items auction problem, a seller wants to sell k
different items to n bidders who have private values, drawn

from some probability distributions, for these items. Economists
are interested in studying incentive-compatible mechanisms
under which the bidders are incentivized to report their values
truthfully. One central question is how to design such mecha-
nisms that can yield the maximal expected revenue for the seller.
The single item case (k= 1) was resolved by Myerson’s classic

work (1) for independently distributed item values. The general
case of multiple item (k> 1) is much subtler and not yet com-
pletely solved. In recent years, it has been the subject of intensive
studies by both economists (e.g., refs. 2–7) and computer scien-
tists (e.g., refs. 8–12). In particular, when the inputs are discrete,
much progress has been made on the efficient computation of the
optimal mechanism. Another line of investigation is to design
simple mechanisms for approximating optimal revenues (13–15)
in various situations, such as in the unit-demand setting. For fuller
reviews and discussions of the literature, we refer the reader to
the papers by Hart and Nisan (16), and Cai et al. (12), and the
references therein.
There remain important aspects of the multiple-item auction

that are not yet well understood. Most of the known results put
restrictions on the distributions (such as refs. 12, 15, and 17). As
noted in ref. 16, a precise characterization of optimal mechanisms
is still wanting for general distributions, even for simple cases such
as for one bidder and two items. The subtlety can be appreciated
by considering the following three examples. If the two items are
independent and identically distributed over values f0; 1g uni-
formly, then selling them separately at price $1 each yields rev-
enue 1, which is better than bundling (with optimal bundle price
$1 and revenue 3/4). However, if the values are uniform over
f1; 2g, then selling them separately (at an optimal price of $2
each) yields revenue 2, which is worse than bundling them to-
gether for price $3, with revenue 3 · 3=4= 2:25. In the third ex-
ample, let F be the distribution that takes values f1; 2; 4g with
probabilities f1=6; 1=2; 1=3g. In this case, the unique optimal

mechanism (see ref. 7) is to offer the buyer the choice between
a 50% lottery for buying any single item for $1, and buying both
surely as a bundle for $4. (The reader may refer to refs. 3 and 16
for more examples and discussions.)
It is also not known how to characterize the optimal revenue

(up to a constant factor) when there is one bidder and k items for
large k; it is unsolved even for ER, the equal-revenue distribution
as defined in ref. 16 (i.e., when all items have independent cu-
mulative distributions FðxÞ= 1− 1=x for x≥ 1).
In the hope of addressing the above issues, Hart and Nisan

(16) investigated the case of one bidder (n= 1) and k> 1. They
obtained interesting structural results that are valid for all dis-
tributions, and applied them to obtain performance bounds on
two natural mechanisms: selling each of the k items separately,
and selling all of the k items as a single bundle. Specifically, they
showed that selling separately guarantees at least a c=log2   k
fraction of the optimal revenue; and for identically distributed
items, the bundling mechanism yields at least a c=log  k fraction
of the optimal revenue.
In this paper, we prove that selling separately guarantees at

least c=log  k fraction of the optimal revenue, whereas for identi-
cally distributed items, bundling yields at least a constant fraction
of the optimal revenue. These bounds are tight (up to a constant
factor), settling the open questions raised (16). Our results also
have implications on other interesting issues, such as monotonicity
and randomization of the selling mechanisms.
It is worth emphasizing that our results are valid for arbitrary

distributions without restrictions, in the same spirit as the results
of ref. 16. We present a technique called the “core–tails (CT)
decomposition” (3. CT Decomposition and the Core Lemma) for
analyzing the revenue of general distributions, which may be
useful for removing the restrictions in previous works such as
refs. 12 and 15.

1. Notations and Preliminaries
We follow the notations in ref. 16. A mechanism for selling k
items specifies a (possibly randomized) protocol between a seller
and a buyer who has a private valuation x= ðx1; x2; . . . ; xkÞ (where
xi ≥ 0) for the items. The outcome is an allocation specifying the
probability qiðxÞ of getting each of the k items and an (expected)
payment s= sðxÞ from the buyer to the seller.
The buyer is assumed to act in his self-interest, behaving ra-

tionally (paying no more than his value for the goods received),
and reporting his valuation x′= ðx′1; . . . ; x′kÞ of the k items so as to
maximize his utility. Therefore, as is common in economics the-
ory, we consider only mechanisms aligned with these two con-
siderations, so that the buyer is willing to participate and has
incentive to report truthfully (that is, x′ = x, the true valuation of
the items). Precisely, we require the mechanism to be individually
rational (IR) so that the buyer utility bðxÞ=Pi xiqiðxÞ− sðxÞ is
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nonnegative for all x, and also incentive compatible (IC) so that
for all x; x′;

P
i xiqiðxÞ− sðxÞ≥Pi xiqiðx′Þ− sðx′Þ.

For a cumulative distribution F on Rk
+ðk≥ 1Þ, let REV ðFÞ

denote the maximal (expected) revenue Ex∼F ðsðxÞÞ obtainable by
any incentive compatible and individually rational mechanism. We
consider two simple mechanisms: (i) selling each item separately,
where each item i has a posted price pi so that the buyer can
decide whether or not to take the item; and (ii) selling all of the
items as a bundle with a fixed price, so that the buyer gets the
whole bundle or nothing. It is easy to see that both mechanisms
are IR and IC. Let SREV ðFÞ be the maximal revenue obtainable
by selling each item separately, and BREV ðFÞ be the maximal
revenue obtainable by selling all of the items as a bundle.
Let X = ðX1; . . . ;XkÞ with values in Rk

+ distributed according
to F . The notation REV ðXÞ, SREV ðXÞ, BREV ðXÞ will be used
interchangeably with REV ðFÞ, SREV ðFÞ, BREV ðFÞ. Note that
we have SREV ðXÞ=REV ðX1Þ+⋯+REV ðXkÞ and BREV ðXÞ=
REV ðX1 +⋯+XkÞ.
In this paper, we consider only independently distributed item

values, i.e.,F =F1 ×⋯×Fk, where Fi is the cumulative distribution
of item i and the Fi values are not necessarily identical. Clearly,
SREV ðFÞ=Pk

i=1REV ðFiÞ. For a one-dimensional distribution F,
Myerson’s characterization of the optimal values gives the following:

REV ðFÞ= SREV ðFÞ=BREV ðFÞ= sup
p≥0

p ·Prx∼FfX > pg:

For k> 1, characterizing the optimal value REV ðFÞ is a subtler
issue and has been the subject of extensive studies. Here, we only
list some results from ref. 16 that will be needed for our paper.

Theorem 0. [See Hart and Nisan (16).] There exists a constant c0 > 0
such that, for all k≥ 2 and F =F1 ×F2 ×⋯×Fk where each Fi is
a one-dimensional distribution,

SREV ðFÞ≥ c0
ðlog2   kÞ2

REV ðFÞ;

also when all Fi are identical (Fi =F for all i),

BREV ðFÞ≥ c0
log2   k

REV ðFÞ:

Hart and Nisan (16) raised the question whether the above two
bounds can be replaced by c=log2   k and c, respectively. Such bounds
would be tight, as the choice of FiðxÞ= 1− 1=x for x∈ ½1;∞Þ
(1≤ i≤ k) achieves these lower bounds. [It was shown in ref. 16 that,
for thisF ,SREV ðFÞ= θðkÞ andREV ðFÞ≥BREV ðFÞ= θðk  log  kÞ.]
Our main result is to answer this open question affirmatively.
We need the following structural results from ref. 16 as useful

tools. First, it is obvious that

REV ðFi1 ×Fi2 ×⋯×FimÞ≤ REV ðF1 ×F2 ×⋯×FkÞ; [1]

for any 1≤ i1 < i2 <⋯< im ≤ k.

Lemma A. (See ref. 16.) Let X and Y be multidimensional random
variables. If X, Y are independent, then REV ðX ;Y Þ≤ 2ðREV ðXÞ+
REV ðY ÞÞ.
Notation. Let Z be a k-dimensional random variable. For any
(measurable) subset S of Rk

+, let 1Z∈S be the indicator random var-
iable that takes on the value 1 if Z∈ S and 0 otherwise. We some-
times write 1Z∈Si Z as 1Si Z for brevity when there is no confusion.

Lemma B. (See ref. 16.) (Subdomain Stitching) Let S1; S2; . . . ; Sℓ be
(measurable) subsets of Rk

+ such that ∪1≤i≤ℓSℓ contains the support
of Z. Then

Xℓ
i= 1

REV ð1SiZÞ≥ REV ðZÞ:

Lemma C. (See ref. 16.) For every k≥ 2 and F =F1 ×F2 ×⋯×Fk
where Fi =F are independent and identical distributions, we have
BREV ðFÞ≥ 1

4SREV ðFÞ.
2. Main Results
For any one-dimensional distribution F, let rF = supx≥0xð1−FðxÞÞ.
Myersons’ classic result says that REV ðFÞ= rF . For a k-dimensional
distribution F , we introduce the concept of the core of F and prove
that it plays an essential role in determining REV ðFÞ.

Definition: Let F =F1 ×F2 ×⋯×Fk be a k-dimensional distri-
bution, where Fi are independent one-dimensional distributions
(not necessarily identical). Define the core of F to be the finite
k-dimensional interval as follows:

COREðFÞ= ½0; krF1 �× ½0; krF2 �×⋯× ½0; krFk �:

Let XF be the random variable distributed according to F .
Our first result is a structural theorem, identifying COREðFÞ as
the critical domain that determines how much revenue can be
extracted beyond simply selling each item separately.

Remarks:Without loss of generality, we can assume that rFi <∞
for all i; otherwise, Theorems 1–3 will be trivially true as all rev-
enues will be infinite.

Theorem 1. There exist constants c; c′> 0 such that for every integer
k≥ 2 and every F =F1 ×F2 ×⋯×Fk,

REV ðFÞ≤ c  REV
�
1COREðFÞXF

�
+ c′  SREV ðFÞ:

Theorem 1 reduces the original problem dealing with dis-
tributions over infinite range into a problem over a finite range,
making it possible to use the law of large numbers for our analysis.

Theorem 2. There exists a constant c> 0 such that for every integer
k≥ 2 and every F =F1 ×F2 ×⋯×Fk,

SREV ðFÞ≥ c
log2   k

REV ðFÞ:

For identically distributed Fi, we show that bundling achieves
optimality to within a constant factor.

Theorem 3. There exists a constant c> 0 such that for every integer
k≥ 2 and every F =F1 ×F2 ×⋯×Fk where Fi =F are independent
and identical distributions, we have the following:

BREV ðFÞ≥ c  REV ðFÞ:
Theorems 2 and 3 answer an open question raised in Hart and

Nisan (16); and by the examples given there, these bounds are the
best possible.
Theorem 3 also gives insight into the issues of nonmonotonicity

and randomization. Hart and Reny (7) observed a counter in-
tuitive phenomenon: there exist one-dimensional distributions F1, F2
where F2 stochastically dominates F1(i.e., PrfX2 > xg≥PrfX1 > xg
for all x), yet REV ðF1 ×F1Þ>REV ðF2 ×F2Þ. It raised an in-
teresting open question how large this nonmonotonicity differ-
ence can get. Theorem 3 yields as easy corollary that the above
anomalous ratio of the revenues is bounded by a constant.

Corollary 1. There exists a constant c> 0 such that for any k≥ 2 and
any one-dimensional distributions F1, F2 where F2 stochastically
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dominates F1, we have REV ðF 2Þ> c  REV ðF 1Þ where F 1 =
F1 ×F1 ×⋯×F1 (k times) and F 2 =F2 ×F2 ×⋯×F2 (k times).
The corollary is true because BREV is monotonic in the sense that

BREV ðF 2Þ≥BREV ðF 1Þ if F 2 stochastically dominates F 1. Theo-
rem 3 also implies a constant factor between the revenues of de-
terministic auctions versus randomized ones. Let DREV ðFÞ denote
the maximum revenue derivable by any deterministic IC and IR
mechanism. Noting that bundling is a deterministic mechanism, we
have the following.

Corollary 2. There exists a constant c> 0 such that for any k≥ 2 and
F =F ×F ×⋯×F(k times) where F is any one-dimensional dis-
tribution, DREV ðFÞ> cREV ðFÞ.
In the ensuing sections, we will prove Theorems 1 first, followed

by Theorems 2 and 3. Theorem 1 provides the basis for focusing
attention onCOREðFÞ only in analyzing mechanisms such as SREV
and BREV, while ignoring contributions involving any tail compo-
nents. We first introduce this CT decomposition and study its pro-
perties in the next section, before proving Theorem 1 in Section 4.

3. CT Decomposition and the Core Lemma
In this section, we discuss a technique called CT decomposition
for partitioning a multidimensional distribution into “core” and
“tails,” such that the optimal revenue can be effectively esti-
mated by focusing only on the core part. This decomposition is
key to our analysis of various mechanisms. We let k ≥ 2.

3.1. CT Decomposition. Definition: Let F =F1 ×F2 ×⋯×Fk be a
k-dimensional distribution. For any subset A⊆f1; 2; . . . ; kg, let
TA be defined as TA =V1 ×V2 ×⋯×Vk where Vi = ðkrFi ;∞Þ if
i∈A, and Vj = ½0; krFj � if j∈A.
Thus, T0 ̸ =COREðFÞ and the entire region Rk

+ is decomposed
into 2k components:

Rk
+ =∪0≤jAj≤kTA =COREðFÞ∪ �∪A≠0=TA

�
: [2]

We are interested in the tail distributions obtained by restricting
F to TA where A≠ 0=. In fact, we will only be interested in those
nonempty A for which all of its tail sections have positive weights.
We give precise definitions in the following.

Definition:Define pFi = 1−FiðkrFi Þ=Prx∼FifX > krFig. Note that
it is always the case that pFi ≠ 1; otherwise, the revenue at price
krFi is positive and equal to krFi , exceeding the maximum revenue
rFi , which is a contradiction.

Definition: A subset A⊆f1; 2; . . . ; kg is said to be proper (rela-
tive to F ), if A≠ 0= and pFi > 0 (and hence rFi > 0) for all i∈A.
Denote the collection of all proper subsets by A.
We next define formally the tail distribution obtained by res-

tricting F to TA, for any proper A∈A. To do so, we first split
each one-dimensional distribution Fi at x= krFi into two dis-
tributions FC

i ;F
T
i as follows.

Definition: Let Fi be a one-dimensional distribution with
0< rFi <∞ and pFi > 0. Let FC

i ;F
T
i be two distributions obtained

from Fi by restricting the random variable X ∼Fi to ð−∞; krFi �,
and to ðkrFi ;∞Þ, respectively, properly normalized. Define

FC
i ðxÞ=

8><
>:

1
1− pFi

FiðxÞ if x∈ ð−∞; krFi �;

1 if x∈ ðkrFi ;∞Þ;

FT
i ðxÞ=

8><
>:

0 if x∈ ð−∞; krFi �;

1−
1−FiðxÞ

pFi

if x∈ ðkrFi ;∞Þ:

Remarks: To simplify the notation, we sometimes abbreviate
rFi as ri, and pFi as pi when there is no confusion. It is also
convenient to extend the definition of FC

i to include those Fi

for which pFi = 0 by simply letting FC
i ðxÞ=FiðxÞ for all x (but

still leaving FT
i undefined) in such cases.

It is easy to check that FC
i ðxÞ and FT

i ðxÞ are continuous from
the right and monotone nondecreasing in their values ranging
from 0 to 1, and thus are indeed valid distributions. We are now
ready to define the family of tail distributions of F .

Definition: For any proper subset A∈A, let A= fi1 < i2 <⋯< img
and A= fj1 < j2 <⋯< jk−mg. Define

FTail
A =FT

i1 ×FT
i2 ×⋯×FT

im ;

FA
Core =FC

j1 ×FC
j2 ×⋯×FC

jk−m :

Let FA =FTail
A ×FA

Core be the resulting distribution defined over
region TA. We refer to the family of distributions fFAjA∈Ag as
the tail distributions of F induced by the CT decomposition.
Note also that the probability that the value of XF falls in the

region TA is equal to pTailA × p
A
Core where

      pTailA = pi1 × pi2 ×⋯× pim ;

      p
A
Core =

�
1− pj1

�
×
�
1− pj2

�
×⋯×

�
1− pjk−m

�
:

Finally, we finish this section with some bounds on the basic
parameters of FC

i and FT
i .

Lemma 1. pFi ≤ 1
k and 1− pFi ≥ 1− 1

k.
Proof: By definition of rFi , we have ðkrFiÞ · pF = krFið1−

FiðkrFiÞÞ ≤ rFi . □

Lemma 2. rFC
i
≤ rFi

1− pFi
, and if pFi > 0 then rFT

i
≤ rFi

pFi
.

Proof:

Note that rFC
i
= sup

0≤x≤krFi

x
�
1−FC

i ðxÞ
�
= sup

0≤x≤krFi

x
�
1−

FðxÞ
1− pF

�

≤
1

1− pFi

sup
0≤x≤krFi

xð1−FiðxÞÞ≤ rFi

1− pFi

:

If pFi >  0 then rFT
i
= sup

x≥krFi

x
�
1−FT

i ðxÞ
�

≤
1
pFi

sup
x≥0

xð1−FiðxÞÞ= rFi

pFi

:

□

3.2. The Core Lemma.We now prove a key structural result, which iso-
lates the contributions of the tail regions from that of the core region.

Lemma 3. (Core Lemma)

REV ðFÞ≤ ð8e− 7ÞREV�1COREðFÞXF
�

+ 2
X
A∈A

pTailA ·REV ðFTail
A Þ:

Proof: By Subdomain Stitching (Lemma B) and Eq. 2, we have

REV ðFÞ≤   REV
�
1COREðFÞXF

�
+
X

1≤jAj≤k
REV ð1TAXF Þ

=   REV
�
1COREðFÞXF

�
+
X
A∈A

REV ð1TAXF Þ;
[3]

where we used the fact that 1TA XF = 0 if A∉A. For any A∈A,
Lemma A of 1. Notations and Preliminaries implies the following:
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REV ð1TAXF Þ = pTailA · p
A
Core ·REV

�
FTail

A ×F
A
Core
�

≤ pTailA · p
A
Core · 2

�
REV ðFTail

A Þ+REV
�F

A
Core
��

:

[4]

Note that, by Eq. 1,

REV
�FA

Core�≤ REV ðFCore
1 ×FCore

2 ×⋯×FCore
k Þ

= ∏
m

ℓ= 1
ð1− pℓÞ−1REV

�
1COREðFÞXF

�
≤ 4  REV

�
1COREðFÞXF

�
;

[5]

where we have used Lemma 1 to conclude ∏m
ℓ=1ð1− pℓÞ−1 ≤ 4.

We have from Eqs. 3–5 that

REV ðFÞ≤
 
1+ 8

X
A∈A

pTailA

!
REV

�
1COREðFÞXF

�
+ 2
X
A∈A

pTailA ·REV
�FTail

A

�
:

As all pi ≤ 1=k by Lemma 1,

X
A∈A

pTailA ≤
Xk
m= 1

X
i1<⋯<im

pi1pi2⋯pim

≤
Xk
m= 1

 
k

m

!
ð1=kÞm

≤
Xk
m= 1

1
m!

≤ e− 1:

We have thus proved Lemma 3.
□

4. Proof of Theorem 1
To prove Theorem 1, we will bound the second term on the
right-hand side (RHS) of Lemma 3 in terms of SREV ðFÞ. By
Lemma 2, rFT

j
≤

rFj
pj
= rj

pj
. By Theorem 0 of 1. Notations and Pre-

liminaries, we have for any A∈A

REV
�FTail

A

�
≤

ðlog2ðm+ 1ÞÞ2
c0

SREV
�FTail

A

�

=
ðlog2ðm+ 1ÞÞ2

c0

�
rFT

i1
+ rFT

i2
+⋯+ rFT

im

�

≤
ðlog2ðm+ 1ÞÞ2

c0

 
ri1
pi1

+
ri2
pi2

+⋯+
rim
pim

!
:

Noting pi ≤ 1=k from Lemma 1, we haveX
A∈A

pTailA ·REV
�FTail

A

�

≤
1
c0

Xk
m= 1

ðlog2ðm+ 1ÞÞ2
km−1

X
i1<⋯<im

ðri1 + ri2 +⋯+ rimÞ

=
1
c0

Xk
m= 1

ðlog2ðm+ 1ÞÞ2
km−1

 
k

m

!
m
k
ðr1 + r2 +⋯+ rkÞ

≤
1
c0

 Xk
m= 1

ðlog2ðm+ 1ÞÞ2
ðm− 1Þ!

!
SREV ðFÞ:

[6]

It follows from Eq. 6 and Lemma 3 (the Core Lemma) that

REV ðFÞ≤ c  REV
�
1COREðFÞXF

�
+ c′  SREV ðFÞ;

where c= 8e− 7 and c′= 2
c0

�P
m≥1

ðlog2ðm+1ÞÞ2
ðm− 1Þ!

�
. This completes the

proof of Theorem 1.

5. Proof of Theorem 2
Because of Theorem 1, it suffices to analyze REV ð1COREðFÞXF Þ.
Note that

REV
�
1COREðFÞXF

�
=∏

k

i= 1

�
1− pFi

�
REV

�
FC
1 ×⋯×FC

k

�

≤∏
k

i= 1

�
1− pFi

�Xk
i= 1

Eyi ∼FC
i
ðYiÞ:

Now, by standard argument,

Eyi ∼FC
i
ðYiÞ=

Z∞
0

y  dFC
i ðyÞ=

Z∞
0

Zy
0

1  ds  dFC
i ðyÞ

=
Z∞
0

Z∞
s

1  dFC
i ðyÞ  ds=

Z∞
0

PrfYi > sg  ds:

Note that

PrfYi > sg=

8><
>:

1−
1

1− pFi

FiðsÞ≤ 1
1− pFi

ð1−FiðsÞÞ s∈ ½0; kri�;

0 s∈ ðkri;∞Þ:

Therefore,

Z∞
0

PrfYi > sg≤ 1
1− pFi

Zkri
0

ð1−FiðsÞÞds:

The integral on the RHS satisfies the following:

Zkri
0

ð1−FiðsÞÞ  ds≤
Zri
0

ds+
Zkri
ri

ð1−FiðsÞÞ  ds

≤ ri +
Zkri
ri

ri
s
  ds

= ð1+ ln kÞ  ri:

Thus,

REV
�
1COREðFÞXF

�
≤ ∏

k

i= 1

�
1− pFi

�Xk
i= 1

Eyi ∼FC
i
ðYiÞ

≤
Xk
i= 1

ð1+ ln  kÞ  ri
= ð1+ ln  kÞSREV ðFÞ:

By Theorem 1, this implies

REV ðFÞ≤ c  ð1+ ln  kÞSREV ðFÞ+ c′  SREV ðFÞ

and hence Theorem 2.
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6. Proof of Theorem 3
By assumption, Fi =F and hence FC

i =FC for 1≤ i≤ k.

REV
�
1COREðFÞXF

�
= λ ·REV

�
FC
1 ×⋯×FC

k

�
;

BREV
�
1COREðFÞXF

�
= λ ·BREV

�
FC
1 ×⋯×FC

k

�
;

where λ=∏k
i=1ð1− pFiÞ∈ ½1=4; 1=e�. Let Y be the random variable

distributed according to FC, we consider two cases as follows.
Case 1: Ey∼FCðY Þ≤ 10rF :
Then

REV
�
FC
1 ×⋯×FC

k

�
≤ Eyi ∼FC

i

 Xk
i= 1

Yi

!

≤ 10  krF = 10  SREV ðFÞ:

Theorem 1 implies

REV ðFÞ≤ cλ ·REV
�
FC
1 ×⋯×FC

k

�
+ c′SREV ðFÞ

≤ ð10  cλ+ c′ÞSREV ðFÞ
≤ ð10  c+ c′ÞSREV ðFÞ:

Because

BREV ðF1 ×⋯×FkÞ≥ 1
4
SREV ðF1 ×⋯×FkÞ

by Lemma C (from ref. 16; see 1. Notations and Preliminaries), it
follows that

BREV ðFÞ≥ 1
4
SREV ðFÞ≥ 1

4ð10c+ c′ÞREV ðFÞ:

Case 2: Ey∼FCðY Þ> 10rF :

VarðY Þ ≤ E
�
Y 2
�
=
Z∞
0

x2   dFCðxÞ=
Z∞
0

Zx
0

2s  ds  dFCðxÞ

=
Z∞
0

 Z∞
s

dFCðxÞ
!
2s  ds=

Z∞
0

Pry∼FCfy≥ sg2s  ds

≤
ZrF
0

2s  ds+ 2
ZkrF
rF

s · rFC

s
  ds

= r2F + rFC2ðk− 1Þ rF
≤ r2F + 4ðk− 1Þr2F ≤ 4k  r2F :

Because yi are all independent, we have

Var

 Xk
i= 1

Yi

!
= k  VarðY Þ≤ 4k2r2F ;

and by Chebycheff’s inequality,

Pryi ∼FC
i

�
jY1 +⋯+Yk −EðY1 +⋯+YkÞj> 1

2
EðY1 +⋯+YkÞ

	

  ≤
4k2r2F�

1
2
EðY Þ

�2 ≤
4k2

ð5kÞ2 ≤
1
4
:

It follows that, by selling the k items as a bundle at price 1
2EðY1 +⋯+YkÞ, we get

BREV
�
FC
1 ×⋯×FC

k

�
≥

3
4
·
1
2
EðY1 +⋯+YkÞ

≥
3
8
REV

�
FC
1 ×⋯×FC

k

�
:

[7]

Also, observe that

BREV
�
FC
1 ×⋯×FC

k

�
≥

3
4
·
1
2
Eðy1 +⋯+ ykÞ

≥
3
8
· 10k  rF ≥ 3 · SREV ðFÞ:

[8]

It follows from Theorem 1 and Eqs. 7 and 8 that

REV ðFÞ≤ c  REV
�
1COREðFÞXF

�
+ c′  SREV ðFÞ

= cλREV
�
FC
1 ×⋯×FC

k

�
+ c′SREV ðFÞ

≤
8cλ
3

BREV
�
FC
1 ×⋯×FC

k

�
+

c′
3
BREV

�
FC
1 ×⋯×FC

k

�
=
�
8cλ
3

+
c′
3

�
BREV

�
FC
1 ×⋯×FC

k

�

=
�
8c
3
+
c′
3λ

�
BREV

�
1COREðFÞXF

�

≤
�
8c
3
+
4c′
3

�
BREV ðFÞ:

This completes the proof of Theorem 3.

Remarks: As pointed out by a reviewer, the proofs of Theorems
2 and 3 actually show stronger results in special cases: in Theorem 2,
if Fi is supported on ½0; kri�, then REV ðFiÞ≥ ðc=log kÞEðFiÞ; in
Theorem 3, if F is supported on ½0; kr�, then BREV ðF ×⋯×FÞ≥
ckEðFÞ.
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